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1. INTRODUCTION

If a function F(v) can be represented on a region £2 in the form
k
F@) = Y fo~) + Ren®), k=0, 1,.., (L)
§s=0

where the f; are independent of v and k, then a formal rational approximation
to F(v) can be derived as follows. For fixed n, let the weighting coefficients
A, y* k =0,1,..,n, be arbitrary. Replacing k by k — a in (1.1), a an
integer > 0, multiplying the resulting equation by A4, ,y*, and summing
from k = 0 to n, one obtains

F(v) H,%(y) = K;%v, ) + S»%@, v), (1.2)
Hna(')/) = i An,kyks

n

Sna(va ')’) = Z An,kykRk+1-—a(v),

k=0
K0, ) = 3 7 3 Ausin 1. 13

Then K,%(v, y)/H,*(y) is the desired formal rational approximation to F(v).
Although the range parameter y is almost always chosen equal to v, there are
advantages in leaving it arbitrary as long as possible.

* This research was sponsored by the National Research Council of Canada under
grant NRC A 7549,
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If 4 ,%(y) is a linear difference operator with respect to n which annihilates
both H,%(y) and K,%v, y), the study of the convergence properties of the
sequence {K,%(v, y)/H,*(y)}n—o reduces essentially to an analysis of the
difference equation #,2(y){ yu(y)} = 0.

The parameter a distinguishes between classes of rational approximations
that correspond to the main and off diagonal entries of the classical Padé
table ([1]). As the parameter a will be fixed, its dependence will usually be
suppressed.

Using this scheme, explicit rational approximations K,(v)/H,(v) are
developed for the Meijer G-functions (generalized hypergeometric functions

(2,3D

I_Ik—l F(pk) —1 1 T 0y geeey 1 -
Flv) = ——————-r—ll.,( )GM+1( 01— pyo, l—pq) B=p+1—q>2,
[ T () _IG+o)
- 2—7” f H(’Iczl (Pk)s dS, (0)3 _ P(O’) ] (14)
P |
- qu (pl 9seey Pq ——U_)’ v w’ ] arg v | < 7‘TB/2’

where L_ is a loop contour running from e to coe’” which separates the
poles of [T>_, I'(s + «,) from those of I'(—s). Under mild restrictions on the
parameters a, o, and p; , it will be shown that

(1) F@) = limp,e Ku@)/Hu(v), v(5 0) fixed, | argv | <,

(2) as for the Padé approximants, X,(v) and H,(v) satisfy the same
homogeneous difference equation with respect to n, and

(3) the error, F(v) — K,(v)/H,(v), can be represented by an easily
analyzed, closed form expression.

Partial results for the 8 = 2, 3, 4 cases are collected in [3, 4, and 5].
In what follows, I will make use of the notation

N al; R ap
oz (W by s, b) o ( bo)
(1.5)
__L F(bM*t)F(l——aN—f't)Wtdt
T 2mi L Fm(l'“bo"}‘t).rn(ap-—t) ’
where

Taer — )= [ Tex—10. Tlew—1=Toew—1), (1.6)

k=n+1
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and L is an upward oriented loop contour which separates the poles of
I'(by — t) from those of I'(1 — ay + t) and which begins and ends at
4+ o0 (L = L,) or —oo (L = L_). The basic functional relationships for the
G-function are then

Gor (w 2’:) =GP (w—l }:ZZ) 1.7)
we Gip (w Z;) = 6oz (w|¢ :[ Z”} (1.8)

If the poles of the integrand in (1.5), interior to L, are simple, then the G-
function is a finite sum of hypergeometric functions, e.g.,

oz (v]2)

& IMby—b) 1 —an+ b)) W™ 1,1 —ap+ by n
= LTl — Bo T by Tolas — by) *e (h bo+ b, | w),
p<q or p=g and |w] <1, (L.9)
where
L'(by) T by — b)) _ 17 I'(b; — by)
* o S
(bu™) s, = Tw) I_]1 o) (1.10)

i#k

and the notation of (1.5) has been used for hypergeometric functions.
Combining the above notations, we rewrite (1.4) in the form

F) = ?E”")) Gz (]} ) B=p+1-g>2,
1 ¢ D(=s)op), v~ o L+
=2l o @ =Trg (L1
~,,F,,(°‘,P’:1, b> o0, |argu| < mBf2.

To see that the above scheme is applicable, one moves the contour L_ in
(1.11) k 4 1 units to the right to obtain the analog of (1.1),

(ap); ()7 w1 L(00) 1,011 . k+1,1—«
Feo) = § o1 T U Ry O (7 101 — po)
(1.12)

For convenience, we set K., v) and S,%0v, v) equal to K,(r) and S,(v),
respectively.

640/6/2-4
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To analyze the subsequent difference operators, the following asymptotic
estimates are pertinent. Their proof will appear elsewhere.

THEOREM 1. If n is a large parameter such that arg n — 0 as n — oo, the
parameters a, A, a, and p;, are independent of n, and B =p -+ 1—q = 3,
then
I'n+1) Grl (w l—n—Xa+1—pg,n+ 1)
I"(n + A) q+2,p+1 0’ a— ap

_ 1 f I(—s) I'(—s 4 a — ap)(n + A, w* s
2ai)y, I(=s+a+1—po)n+ 1.,

El

Gn(W) =
(1.13)

~ \/@g‘i_j [WN2]1' exp 3~B[WN2]1/B _+_ !3)_ [WN2](3—H)/B + O([W5N10—4B]1/B);

<AL+ O([1 + | w P4 [wNE]1B)),

(1.14)
wN2 — o, | arg[wN?]| < #[B8 + 1],
w = o(N%), N2 = n(n + A),
pr=@+HB-D+ Y p— 2 (1+a),
j=1 j=1
1 2 . /2 1

= max(3.56 1) 4=min (3. 55—5)

Moreover, if
—a,*0,—1,-2,.; k=1,.,q, r=0,1,..,p op=a,

P q 4 0 (1.15)

pr — p; 7 an integer, k # j,
then
_I'n+1)
Ln,k(w) - I—v(n + A)
P+2.,2 2 l—n—Xa+1—p,a+1—pg,n+1
XGq+3,p+ (W 09a—o‘P9a+1_Pk )’
(1.16)
(I"(——s) IN—s+a—op) IN—s+a+1-— pk))
:_1_f X I(s — a 4 pn + X, w*)
2miJ I'(—s+a+1— poln + D_; ’

NF(Pk_a)F(Pk_O‘P) 21a—0y, 211
For T oy 2 DN {1 OeN ™), (L17)

wN2 — o0, | arg[wN?)} < #(B + 2)/2.
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That root of [wN2]'/8 is chosen which has argument zero when w, n and X are
positive.

For w independent of » and | arg w | < #B/2, (1.14) is due to Wimp [6].

2. MAIN RESULTS

THEOREM 2. Let the parameters a, A, o, and p, satisfy the conditions

a=01,.., or p; A=0,1,., or p—a, 2.1)
pr—oa, #=#0,—1,—2,...; k=1, r=01.,p; o9=a, (22)
pr — p; 7 an integer, k # j,
e Pi 2.3)
a, — a; 7 an integer, r ¥ J,
and set
o —n,n—I—)\,—a—l—po\_
Ho®) = auaFy (T 15 0 PO ), 24)

- i (=M 0+ Ny (—a + poliys (op);
SO = O T e o G 17 2D

Then

. K,(v) - F(Po) 1.9 | 1 — ap
}11—1;2 Hn(v) o I'(ap) Gp’Q+l (U 0, 1 — po)’

(£ 0) fixed, |argv|<aw, B=p+1—qg>2 (26

Moreover, the convergence is uniform on compact subsets of the open
sector | argv | <.

Proof. This will follow directly from Theorems 3 and 4 which analyze the
asymptotic behaviour of H,(v) and K,(v), respectively. ||

THEOREM 3. Under the condition (2.3), there exist numbers A; ,j = 1,..., B,
and B, , k = 1,..., q, which are independent of n and v such that

RE) A: - i
HA®) = aiaFy (T 0N 0 00 i) @7
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_ I''m+ 1D I(—a+ 144 ap)
I'n+ X I'(—a+ pg)
l—n——)\,a—i—lfpo,n—{—l)

O,a—ap

1.0+1 i
X Ggippn (Ue"'

= ._1_ f T(—=s)(—a 4 pg)s (n + N), (ve'")* ds
2mi (a4 14 ap), (n+ D_; ’

8

Z A;G (veimB+2-20) | Z By L, (vein2e~8+1))

i=1 k=1
~ A,G,(ve™®),

- I'(—a + 1 + ap)[vN2)
I(—a + pg) VBQ2m)1

vN?— oo, |arg[vN?]| < =w, argn—0, v=0o(N¥),

where

w is the largest integer < 5

I'(—a+ 1+ ap)
I'(—a+po) °

Ay = Q)8 ginbr

and the other parameters are defined in (1.14).

Proof. From the partial fraction decomposition

P —a) & demd™ | < i
= Cr J’
i (y — by kz=:1 y — b + gl s

_ _ (1 (@2
- 1! cﬂ,m - ( I)B (b:))ll s

Cim

with y = €728, g, = e®¥mle-an }p = gi2nla-m)_jt follows that

I'(s —a+ po) I'(—s +a+ 1~ pg)
I's—a+14ap) I'(—s +a — ap)’

J'm(s) =

exp{BloN# + O([*NS-#]1/2)},

(2.8)

2.9)

(2.10)

2.11)

(2.12)

[
z dk m(2"7)_ﬂ ~tm(}-+87+a—0p) iwe(Zm-—B)I'(s —a+ Pk) F( —s+a+1— Pk)
k=1

B
18 H—inBT pim s(8+1-27)
+ ¢.m(2m)—f e € .
i=1

(2.13)
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The numbers 4, and B, are then defined by

I(—a+1 Y ‘
(1"(a_ —‘l1—+-lf)—0<)xp) T (s) = ,Z‘l Bietms2oBI(s —a+ p) [(—s +a+ 1 — py)
B
+ ¥ Ajeirsisii-oi, (2.14)
j=1

In particular, 4, is given by (2.11),

g inge L(—@+ 1+ ap)

— 1—8 ,inBr

Az = Qm)t—8 g8 T—a ¥ pg) ° (2.15)
and

Bk — m(a—pk)(B—2w) F( a+ 1 + OLP) F(l =+ Pr — PO) F*( Pr + PO)

F—a+p) T +or —p) Tloe — o) (316

It follows from the integral definition of H,(v) as a G-function, with L = L,
that

_I'(—a+ 1+ ap)
O ="TCa 59
1 I'(—s) I'(—s + a — ap)(n -+ A), (vei)
i), T a1 oo 1), ) ds o

Equation (2.9) then follows when J,(s) is replaced by the expansion (2.14),
and the resulting integrals are identified. For | arg v | < =, the asymptotic
expansion of all the resulting functions can be deduced from Theorem 1,
and (2.10) follows directly. Note that for Theorems 1 and 3 to be valid, it is
not necessary that n be a positive integer. |

THEOREM 4. Under the conditions of Theorem 2, set

P

F(o) = 3, ),

r=1
(2.18)
(@p™)_ 1, 0,0, + 1
FA0) = s k(0 T PO (—1pt),
2 s Ia — ap)
Gu(v) = "G,y ——*————Hn —1) v),
) = 3 0G0, 0) + gt (1)
I'('—a + af) I‘*(o"r - O‘P)(n + ’\)a—a,
G”'T(v) B P(cx, +1-— PO)(n + 1)-—a+ar (2.19)
—n+a—o, ,n+A+a—oa,pp— .
XF( a+1—a,1+ap—a, (_1)810)_
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Then
(P(—a+1+0‘P)F(1—Po+0L¢) )
- X I'(po ~ a,) v*G,,(ve'™) Fy(v)
K= 2, (@ TP T T a7 — o) TG — )
X I'(—a+ o) a+1—a)
~ A,F(v) G,(ve'™®), n— oo, larg v | < m, (2.20)

where A, is defined in (2.11).
Proof. Under the above parameter conditions, consider the integral
L TEDa pou G+ D,
* 2mi ) i (—@ + 1+ ap)osr (p0)s Doire (0 + Dz
k—a=0,1,.., (2.21)
where the contour from —ioo 10 ico separates the poles of I'(—s) from those
of I's+k—a+ po) I'(s + ap) I's + kK +n -+ A). The integral I, is

absolutely convergent forA—p-2 +a-(k-a)f-2) <A-p-2+a<-1.
Evaluating [, by the poles to the right and left of the contour, one obtains

(=DF (—n)p (n + N (—a + pol
(—a + 14 ap)y k!

S (—-n—}—k,n-I—/\—!—k,—a‘]“Po‘i'k""P
ot+a+2l ot —a+1+oap+k 14k pg

1)

i ( a + Po)k—a, (OLP*)—a, (n —l"' )‘)k—a,
2 (—a+ 1+ aplpea, Di—s, (PO)=s, 7 + D_pie,
< F Olpy A— k—I—OLT——OLp, —k+06,-, 1+OL, Pos 1 ! 1)
(1 —n—A—k+ao,, 1—po+a—k+toy, 1 4+o,—ap, n+1—k+4a,
(2.22)

Substituting this identity into the definition of K,(v), replacing k by k + a,
and making use of the result
F.(v) G, (ve'™®)
(F( a+ o) I'(a) I'*(ap — a,) I™*(a, — ap) )
_ x T+ 1) T + A+ a — ) T(po)
e, + 1 —po)F(po-—(x,)F(n-{— 1 —a+ «) I'(n+ X I'(ap)

9 i (—nt+a—akm+A+a— a)lpo— a)p (—v)f
@+ 71— o) (I + oap—

% —k— a+a'r’ _k+0lr—"ap, 1 Oy 1+‘XT-PO ‘ 1)
(k+1 —a+nto,, —k+l-a-n—At-o,,—k-+1-potoy, 1do,—ap|
2.23)
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one obtains the first line of (2.20). A further computation using Theorem 2
with n replaced by » — a + «, and v independent of n, shows that

I'—a+4+ o)1 +a— o) ' a, — ap) I'(1 + ap — )
I'(t — po + ) I'lpg — a)2m)F*

> e—inﬁfva,——aGn(Ueinﬁ)’ n— 00, |arg v | < m, (224)

G, (vei™?) ~

and

I'l — a+ ap) e
I(—a + po)2myt

K. (v) ~ G, (ve'™) f v F,(v), (2.25)

which reduces to the last line of (2.20). Theorem 2 then follows directly. [
In the subsequent analysis, we will make use of the difference operators
J”n('y) = %n()\ — D 0) %n(A iy 4 + 17 —a—+ O‘l) %n )" —a + ap)
—nn+A—p— 1)y UQA —p+2, —a+p)
UA—pF+gt ], —at+p)UX—p+q+2) - U D),

(2.26)
where
A=At p) oy e+ A1 — )
U 1) = m A — 1 & M+ A — 1 &
UM p) _ (n+A—1) 227
g A u)  (n — n .
U =lim == =y a1

and €7 is the shift operator on n, i.e., 77y, = y,_; . Clearly, A ,(y) is of
order p + 1 and can be written in the form

P+1
My) = ) [Cin, X) + yDi(n, N)] 6. (2.28)
i=0
Explicit expressions for the C,n,A) and D,(n, ) can be deduced from
[4, Chapter 12; 7]. A simple computation shows that

%“”gg:&JZMJii?“+w, 029
and
(n+A)s _(n+A_p_1)s
./”n(‘)/) g (n + 1)__3 g - (n + 1)—3 S(S —a -+ aP)l
_ (n ‘I"(nA_: lp)—z_ll)s+1 (S —a + pO)l . (230)

Note that if s equal to an integer r, (—1)" (—n), (n + 1)_, = 1.
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THEOREM 5.  Under the conditions of Theorem 2, the functions H,(v), K, (¢v),
G (ve'B+tm)y gnd L, ((veimB-1+2m0) Lk < 1,..., g, m an integer; all satisfy the
linear difference equation of order p + 1,

Moreover, if |argv| <m, the p+ 1 functions G,(ve'™F+2-20) j = ],..,
B=p+1—gq, and L, (ve"2—8+D) k = 1,...,q, form a basis #,., of
(2.31). The parameter w is defined in (2.11).

Proof. One can apply .#,(v) directly to the integral representations of
G, (vemB+tm)y and L, ,(ve'"18-112m) ag given by (1.13) and (1.16). It then
follows from (2.30) and the residue theorem that these functions satisfy (2.31)
(see [8]). As H,(v) is a linear combination of these functions, it too satisfies
(2.31). From the above and theorem 1, it is clear that #,,,, is a basis of (2.31).
Finally, again making use of (2.30), we have

& " (=8 + podres (2p)i (—M)ss (B + Nieay i
Y L S e e T (7 )

_ n n-k (—n)k+j (n + A — P — l)k+i ((xp),- (‘—a + PO)k+i DAY J
kz=:a E) (po)i J! 'k + )1 — a + aphria o

n~1 n—k—1

(=i + A — p— Dpisa (@p)i{(—a+ polisin ANk i
2 ()i jT (1 — a+ ap)ps Tk +j+ 1) (—yPH(y/v),

_n_a(—”)na(n-i')‘—‘}’—1)1+aF(1—-a—l—ap)I‘(po) e ;
~ X Fa+ ) ' T(—a + po) T(oe) =) ey,

_ -r(l _a’i“o‘P) F(PO)(—n)a (n"}’A_P_ l)a (_’)/)a
I'(—a + po) I'(ap) I'(a)
_n—f—a,n—l—)\—p——l‘—l—a’y/v) @40

a

X 2F1(

= @ )+ A —p— D)o (7T BETATP ),

a=0. (232
Thus
M (0){Ka(0)}
— (=1t A—=p—DIn+XA—p—1+a) (01— a+ap) ['(pg) /o

IF'n+1—a)I'A+a—p) I(x,) I'(—a + po)
=0, A - a — 1 — p a negative integer. | (2.33)
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THEOREM 6. Under the conditions of Theorem 2,

Ka(v) = Z Ci(v) Gplve'B+2-20) + Z Di(v) Lo w(vei"®~5+1),  (2.34)

=1

where
j
Ci(v) = Z (A, — Ay_y) F(ve2mii-k), j=12,.., ,3 — w,
k=1 :
(2.35)
B—i
= Y (Ao — Appap) Floe*m #1570 j= B+ 1 — o,., B,
k=0
- ByEy(v) I'(PQ) +1,2 ir 1, pis po
Dk(v) - P(Pk) 11(1 _ Pk) ’ Ek( ) 1-1( ) Ga+2.11+1 (Ue Pr s Op )
(2.36)

and the A, , B, are defined in (2.14), Ay = A1 = 0.

Proof. The existence of the expansion for K,(v) follows directly from
Theorem 5, and only the identification of the coefficients remains.
We begin by noticing that the general relationship

a
@mi) G lboj’ .

__ imoym+l,n —iar dp ——l'n'c +1,n
= €"Gp,:1 (We I b ) - qu+1 (
g, o

ap

o bo) (2.37)

implies that
L, (we=2m) = e¥miexL . (w) + (—1)2(2mi) ei"nG (we™™),  (2.38)

and

E (we™3t) = e-tminE, (w) + (2mi) e-"eF(w). (2.39)

Moreover, as H,(v) is a polynomial in v, H,(v) = H,(ve?"%). Combining
this relationship with (2.9) and (2.38) one obtains the recursion relationship

8
0= 2 (AJ'+1 _ ]) Gn(vem(ﬂ 2.7)) + ( 1)“(2771) G"(Uem(Zw-—B)) Z ezm)kB

j=0 k=1

q
+ Z Bk(l . e21n'p,,) L",k(vein(2w—3+l)). (240)
k=1

This equation expresses G,(ve—*7f) in terms of the basis %, .
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Furthermore, since

I'(s + po) I'(—s + 1 — po)

Jus) = (oo S RO b

(2.41)

it follows from (2.14) that

J(s)v s ds

L T T6 o)
2mi ), I'(s + po)

(Po) —a (v (24 c i
— M) * 32 A;F(vein®—8-1) Z (—l)“ B E, (ve-in(2e=6+1))
k=1

N (ap) 1 —alim

=0, (2.42)

since the integrand of the integral has no poles interior to L_ .

As G,(ve'"®) is the dominant term of K,(v) as n — oo, Theorem 4 implies
that Cy(v) = A,F(v), or that (2.35) is valid for j = 1. The remaining coeffi-
cients are determined by the fact that K,(v) as a polynomial in v is invariant
under the transformation v into ve~%":, When v is replaced by ve~2"¢ in (2.34),
one obtains a linear expansion of K,(ve=?"%) in the G (ve"'#-),j = L,..., B
and L, (vetr@e—8-1) If G,(ve~*"®) and L, ,(ve"?»~B-V) are replaced using
(2.40) and (2.38), respectively, one obtains a linear expansion of K,(ve~2"?) in
terms of the basis #,,, which must agree with the expansion of K,(v) in terms
of the basis #,,, . In particular, if the coefficients of G,(ve?"®) are compared,
one obtains AgCy(v) = 4,Cy(ve ") or Cy(v) = AzF(ve®™). More generally,

Ci(v) = C;4(ve™®) + (A; — A;,) F(v),

(2.43)
j=12..,8 j#E1 4+ B — o,
and

a .
Criso(t) = Co_o(ve™™) + (= 1)1 (2mi) 3, €™ Dylve™)
k=1

+ (Arip-o — 45-) F(0) 4+ (—1)* 2mi)F() i "B, (2.44)

Equating the coefficients of L, ,(ve*"2«—8#+1)), we obtain

(—2mi) &™*B,
I(py) I'(1 — p)

Letting j = 2, 3,..., B — w in (2.43), one obtains by induction the first line

Dy (v) = €D (ve™®™) + E(@). (2.45)
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of (2.35). Letting j = B, — 1,..,2+ B — w in (2.43), one obtains the

second line of (2.35). This evaluates all the C;(v). To evaluate the D,(v), set
By Ew(v)

Llp) I'(1 — py)

We wish to show that D,*(v) = 0, k = 1,..., q. Then (2.39) and (2.45) imply
that

Dy(v) =

+ VD *(v). (2.46)

D#(v) = Dy *(ve2). (2.47)

Making use of (2.42) with v replaced by vei™2«—8+1) and pe"2«—F-1) (2.44) can
then be written in the form

ey D #(v) = 0. (2.48)

e

k=1

Replacing v by ve*™, r an integer, and using (2.47) this last equation can be
written in the form

q
Z eiﬂ'pk(2r—l)vkak#(U) = 0. (2.49)

k=1

Letting r = 1, 2,..., g, one obtains a homogeneous system of g equations in
the g unknowns v?:D,*(v). As

X1 e Xg
3 q
3 — . 2 2
X1T ey X, =[] x (x2 — x2), (2.50)
201 201 k=1 1<i<k<q
q—. q—.
X7 seees Xg

it is clear that with x; = e*"#x, the determinent of the above system is not zero
under the condition (2.3). Hence D*(») =0, k = 1,..., ¢, establishing

(2.36). 1
COROLLARY. Under the conditions of Theorem 2,
S.(v) = F(v) H,(v) — K.(v),
B
= 3, [4F©) — C/o)] Glvein+2-2)
j=2

q L7 oy
+ 3 B Bet) — B@) Lyaemesm), @51)
k=1
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i-1

A;F(v) — Cv) = Y, Ay[F(ve #nli-1-0)) — F(pe~iznti-t)] j = 2., B — w,
k=1
(2.52)
s :
= Y Ai[F(ve?**-7) — Flyen*+1-M)] j=B+ | — w,..., B,
k=i

Su(©) Hu(v) = Olexp{—o(v) | vN* |'/3},

o(v) = 28 cos [ﬂ(ﬁzg 2)] cos [ he ;;3 uloe ]’ (2.53)

>0, largv | < 7.

3. REMARKS

Remark 1. 1t appears that Theorem 2 is valid when condition (2.3) is
weakened. For when this condition is violated, the exponential terms,
G, (ve"#+2-21)) and their coefficients in the expansions (2.9) and (2.34) of
H,(v) and K, (v) remain well defined. It appears that the limiting form of the
sum of the L, ,(ve2«—8+1)) terms is O([N%]° [log wWN®I™), n — oo, where o
is a constant and m is a positive integer. This would be subdominant to the
exponential terms G, . Condition (2.2) is suspect also.

Remark 2. 1f A does not satisfy condition (2.1), or y is not equal to v
(say v = rv, 0 <r < 1), then K,%v, y) would be a solution of the non-
homogeneous difference Eq. (2.32). It appears that the more involved
analysis of this nonhomogeneous equation would still lead to the results of
Theorem 2.

Remark 3. Preliminary computations indicate that for 8 = 2, the asymp-
totic representation for L, (w), (1.17), remains valid, and

Gn(W)zp(n+l)Gq+2’1 ( 'l_n"\’a+1_P0’n+1

Ty Gosbias (v O ag ) @b
~ Vi [wN?" [1 4 w2 e=Ne(1 4 O(NY)},
WwN2—> o, (1+w)Ni—>o, N2=n(n-+N), (3.2)
| arg[wN?)| < 37, |arg[(l1 + w) N?} < =, cosh § = 1 + 2w,

and r is defined in (1.14). For g = 0, these results have been established by
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Watson [9]. A rigorous derivation of the general case would imply that the
results of section 2 are also valid for 8 = 2.

Remark 4. Clearly the range of validity, | argv | <, in Theorem 2 is
optimal as F(v) is multiple-valued and takes on different values at ve'” and
ve~i"—a behaviour that rational approximations cannot be expected to
mimic. This optimality is also reflected in the fact: that asymptotically the
zeros of H,(v) lie in a sector | arg(ve™")| < ¢, € > 0.
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